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ABSTRACT

.

A theoretical model for the range error covariance is derived by

assuming that the residual refraction errors are due entirely to errors

in the meteorological data which are used to calculate the atmospheric

correction. The properties of the covariance function are illustrated by

e e g

evaluating the theoretical model for the special case of a dense network

of weather stations uniformly distributed within a circle.
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I. INTRODUCTION

When it is necessary to measure the relative pisitions of numerous
widely spaced points on the earth's surface, it can be economical to place
a laser ranging system on board a satellite and measure the range to cube
corners on the earth. This may be the case for the large arrays which
would be used to monitor crustal motion. These arrays could consist of up
to 400 survey points uniformly spaced within a square measuring 500 km on
a side. To minimize :2st and maintenance only a few of the survey points
would be instrumented to provide the meteorological data required by the
range correction formulas. Consequently, for a satellite based ranging
system the range error caused by atmospheric refraction can be considerably
different from the error for a ground based system.

The basic problem in satellite based ranging is to measure the rela-
tive vertical and horizontal positions of the cube corners in the array.
In the case of two retroreflectors, this is accomplished by making "m"
range measurements from the spacecraft to one cube corner and 'n'" range
measurements to the other cube corner, using these ranges to recover the
vertical and horizontal positions. The overall measurement precision is a
function of both instrumentation errors and channel effects. The expected
precision can be estimated if the statistical properties of the system
accuracy are known [1]. In particular the effects of errors in the atmo-
spheric correction can be determined if the covariance matrix is known for
the residual refraction errors associated with the m + n range measurements
to the two retroreflectors.

The covariance can be calculated directly by ray tracing. However,

this is a cumbersome process requiring radiosonde data from multiple
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locations throughout the array of survey points. The covariance matrix
will have to be calculated for each different satellite pass and array
~onfiguration and will be valid only for the region from which the radio-
sonde datawere collected.

As an alternative, a theoretical model for the range error covariance
can be derived if we make some simplifying assumptions atout the residual
refraction errors. This approach is discussed in the following sections.
The range error is related to errors in the meteorological data which are
used to calculate the atmospheric correction. A theoretical model for

the covariance function is derived and its properties examined.

Co b Pagp iV

Dty



——

Doy S, S

L L R R

e T

-

II. RESIDUAL REFRACTION ERRORS

The range error due to atmospheric refraction is defined as the dif-
ference between the optical path length Ro and the straight-line path

length Rs. The error can be written in the form

AR=R -R_ =8+0G
o s

G = (1)

o
kzl *
S is the most significant term and corresponds to the error introduced by
a spherically symmetric atmosphere. It-is on the order of 13 meters at
10° elevation. The Gk terms are the errors introduced by horizontal
refractivity gradients. The effects of these terms were investigated by
ray tracing through three-dimensional refractivity profiles [2, 3].

The profiles were constructed from radiosonde data gathered in Project
Haven Hop I [4]. The results indicate that only the linear gradients con-
tribute significantly to the range error at elevation angles above 10°.

At 10° elevation linear gradients contribute up to 3 or 4 centimeters to
the range error while quadratic and higher order variations contribute
less than 2 to 3 millimeters [2]. The contribution due to quadratic and
higher order variations decreases to less than a millimeter above 20°
elevation. Therefore, the range error can be accurately expressed using

only the first two terms in Equation (1).

AR = § + G1 (2)

Analytic expressions for the ronge error can be derived by evaluating
the integral of the group refractivity and its horizontal gradient along

the optical path. In general, the actual refractivity and gradient pro-
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files will not be known. However, accurate estimates of the range error
can be calculated by using suitable theoretical models.

Gardner and Rowlett [2] used Marini and Murray's [5, 6] approach
to obtain an estimate of S in terms of the surface pressure, temperature

and relative humidity at the laser site.

A
SC = f()) (3)
sin E + B/A C/B

sin E + 0.1

sin E +

1

_ 1 -8
A S TCR) [0.002357 PS + 0.000141 eS] + 1.0842 x 10 PSTSKS
2
-8 Pg
- 9.4682 x 10 T
s
2
-8 -8 Ps 2
B = 1.0842 x 10 " P TK + 4.7343 x 10 = —
s's s Ts 3 - 1/KS
N
K -
_ -13 2 s
C = 1.4961 x 10 PSTS TR
8
Rs = 1,163 + 0.00968 cos 26 - 0.00104 TS + 0.00001435 Ps
£(A) = 0.965 + 0.0164/A% + 0.000228/2*
0 = colatitude of laser site
H = zltitude of laser site (km)
PS = gurface pressure at laser site (mb)
TS = surface temperature at laser site (°K)
e, = surface partial pressure of water vapor it laser site (mb)
A = wavelength of laser radiation (um)

REPRODUCIBILITY OF 1N},
ORIGINAL PAGE IS POOR

The accuracy

of this spherical correction formula was investigated by com~

paring it with ray trace corrections. The formula is an unbiased estimator

of S. This is illustrated by the ray tracing data in Table I which was

taken from Gardner and Rowlett's report [2]. RT, is the range correction
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obtained by ray tracing through a spherically symmetric refractivity pro-
file. The profiles were generated from the Haven Hop I radiosonde data.
If the radiosonde profiles and the ray tracing procedure accurately
describe the atmospheric refraction, then RT, will be equal to S.

1

TABLE I

COMPARISON OF THE SPHERICAL CORRECTION FORMULA AND THE

SPHERICALLY SYMMETRIC RAY TRACE

scC - RTl
(31 Data Sets)
Elevation Mean Standard
Angle (cm) Deviation
(cm)
10° -0.03 0.46
20° 0.06 0.25
40° 0.00 0.14
80° 0.01 0.09
RTl = spherically symmetric ray trace correction

SC

spherical correction formula

The standard deviation of the difference between SC and RT1 arises
from two factors: errors in the formula for SC and errors in the measured
values of surface pressure, temperature and relative humidity whizh are

used to calculate SC. The dominant eifect is pressure (see Section III).

A 1 mb pressure error introduces approximately l4 mm error in SC at 10°
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elevation. The surface pressure used to make the comparison in Table I
was calculated by fitting a regression polynomial to the pressure measure-
ments obtained by eight weather stations surrounding the laser site. The
pressure errcr is a function of the order of the regression polynomial,
the location of the weather stations and the measurement error. For the
data in Table I the effective pressure error is estimated at 0.6 mb which
gives a value of 8.4 mm for the error in SC at 10° elevation. The esti-
mated errcr is larger than the standard deviation of RTl - SC listed in
Table I. Either the estimated pressure error is too large, or there is
some correlation between the pressure error effects in RT1 and SC. We
believe the latter explanation is more likely since the surface pressure
measured by the radiosonde balloons is also used to generate the refracti-
vity profile. Consequently, it seems reasonable to assume that the formula
errors in SC are negligible comparzd to the measurement errors in the
meteorological data used to eval:'te SC.

Gardner and Hendrickson [2] obtained an estimate of G, in terms of

1

the horizontal pressure und temperature gradients at the laser site

D(1 + -%cos4 E) P - 2K 2
3 n-: K (4)
sin® E tan E -]

C
GC, = :

1 sin E tan E ar- V(PsTsKs) +

where
C = 5.915 x 1072 £(2)

D= -6.362 x 10/ £())

|3
]

sin @ x + cosa y

a = satellite azimuth angle

1%

and y are the east and north unit vectors.
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The accuracy of the gradient correction formula was also investigated
by comparing it with ray trace corrections. The results indicate that GC1

is nearly an unbiased estimator of G This is illustrated in Figures 1

1
and 2 where the means of the corrected and uncorrected ray trace data are
plotted versus azimuth. RT3 is the range correction calculatedi by ray

tracing through three-diuensional refractivity profiles (see reference {2]).

RT3 contains the effects of horizontal gradients and depends on both azi-

muth and elevation angles. RT1 is the range correction obtained by ray

tracing through a spherically symmetric profile. The gradient effects are

isolated by calculating the term RT3 - RTl which will be equal to Gl'

effects not compensated by GC. are given by the error term RT, - RT, - GC,.
1 3 1 1

is plotted in Figures 3 and

Any

The standdard deviation of RT3 - RT1 - GC1

4, It arises from errors in the formula for GC1 and errors in the meteoro-~

logical data which are used to calculate GC The magnitude of the latter

1
effect can be estimated from an analysis of the standard error of the
regression coefficients which were used to obtain a least squares fit of
the surface data. Gardner and Hendrickson's [3] results indicate that a

1 to 1.3° K temperature error could account for almost the entire residual
error in RT3 - R'I‘1 - GCl'

In summary,the ray trace comparisons indicate that the spherical

correction formula SC and the gradient correction formula GC, are nearly

1
unbiased estimators of the range error due to atmospheric refraction. The
uncorrected residual error appears to be caused almost entirely by errors
in the surface meteorological data which are used to calculate SC and GCl.
In the following section this assumption is used to derive a theoretical

model for the range residual covariance function.
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Figure 1. Mean of the uncorrected (RT3 - RTl) and corrected (RT3 - RTl - GCl)

gradient error versus azimuth. The elevation angle 1is 10°. The

data are from Gardner and Hendrickson's report, vage 26 [3].
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Figure 2. Mean of the uncorrected (RT3 - RTl) and uncorrected (RT3 - RT, - GC

1

gradient error versus azimuth. The elevation angle is 20°. The

data are from Gardner and Hendrickso 's report, page 28 [3].
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Standard deviation of the uncorrected (RI3 - RTl) and corrected
(RT3 - RTl - GCl) gradient error versus azimuth. The elevation
angle is 1G°. The data are from Gardner and Hendrickson's report,

page 27 [3].
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Standard deviation of the uncorrected (RT3 - RTl) and corrected
(RT3 - RT1 - GCl) gradient error versus azimuth. The elevation

angle is 20°. The data are from Gardner and Hendrickson's report,
page 29 [3].
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ITII. RANGE ERROR COVARIANCE FUNCTION

The problem is to calculate the covariance between tie refraction
errors inherent in the range measurements to two different points on the
earth's surface. If both the spherical and gradient correction terms are
applied to the ranging data, the residual refraction error will be given

by

OR =R, - R_ - (SC + GCl) = ASC + Acc1 (5)

where ASC and AGC1 are the errors in the correction formulas. We will

assume that ASC and AGC1 are due entirely to errors in the measured values
of surface pressure, temperature and relative humidity. ASC is estimated

by taking derivatives of SC with respect to the meteorological parameters

3sC 3sC 3sC

ASC:_SFAP+_-ﬁAT+3RhARh
3sc _ £(A) 2.357 x 1073
3P  F(9,H) sin E
35C £(\)1.084 x 1070 p K
351 : s s (6)
3T
3
sin®™ E

6 17.27(T_ - 273.15)
35C . _£(0)_ 8.615 » 107 5 1
Rh - F(8,H)  sin E 237.15 + (T_ - 273.15) |

When AP is measured in mb, AT in °K and ARh in percent, ASC is given in
meters. The derivatives are plotted versus elevation angle in Figure 5.

Since the measurement errots are statistically independent, the total
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error in SC is given by

0. = | [284 : + |25, ’ +[28L 4 2|V ¢)
SC ) P 3T T daRh Rh
where
GSC = S8TD "..8C)
= QY »
GP 87D (4P)
Op = STD(AT)
%n STD{. Rh).

Typical measure ent errors are 0.5 to 1.0 mb for pressure, 0.7 to 1.5° K
for temperature and 5 to 10 percent for relative humidity. Consequently,

above 20° elevation pressure errors are the dominant factor in ASC

_ asC
ASC = =5 AP . (8)

To mininize cost and maintenance only a few of the survey points on
the earth's :urface would be instrumented to provide the meteorological
measurements required by the range correction formulas. Pressure, tempera-
ture and relative humidit' acr the survey points would be interpolated from
measurements obtained at existing weather stations. In this case the
error in the range correction formula would be related to the interpolation
te: hnique and the locations of the surface weather stations. To illustrate,
we will calculate tae expectea error when a least squares regression poly-
nomial is used to interp iate the surface data. This approach was used
by Gardner and Hen’ ickson [3] to investigate the accuracy of the gradient
correction forr 1la.

Althor_  the weather statiosns in a realistic network will be located
at different altitudes, we will consider the simpler case where the

stations are all .. cated at the same altitude. The meteorological para-
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meters are individually expanded in a two-dimensional mth order regression

polynomial of the form

m

where the Xk variables are the horizontal coordinate polynomials and the

Bk factors are the regression coefficients. Since the weather station
network and survey points extend over a region several hundred km in length,
the Xk variables should be expressed in geocentric coordinates. For linear

regression we have

X, =6

¢ sin 6 . (10)

®
[]

¢ is the longitude and O is the colatitude. 8 is proportional to hori-
zontal displacement in the north-south direction and ¢ sin © is
proportional to horizontal displacement in the east-west direction.

The regression coefficients are calculated by measuring F at n > m
different weather stations. Let Fi be the ith weasurement which is made
at the coordinates (xil, xiZ""’xim)' Define X as the n X m matrix

containing x,, in its £"h row jth column.

i
Xll....le
X=1: (11)
an....xnm
Also define the column vectors
T
F = [Fle...Fn]
B = [B.B.,...8 1" . (12)
= 172 m

i -
. ";
3 1,
g, o e

ot v e S RS R
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The weighted least squares estimate for B is [7]

- T -1 -1 .7 -1
FENCO e il S

F (13)

EF is the diagonal covariance matrix of the measured values of F. When
the weather stations are all located at the same altitude, the measurement
error is probably the same at each station so that EF is just the identity
matrix multiplied times the standard deviation of F. The m * m variance-

covariance matrix for the regression coefficients is given by

Cll....Clm
: ) T -1 -1
-le....C )|
Ck1 = cov (B )
L]

Cug = var (B .
If we let 2 = (2, Z, ...Zm)T denote the position coordinate for a survey

point, then the estimated value of F at the survey point is

F=8z . (15)
The standard erro: in ﬁ is
n o 1/2
soaf) =| } ] c,z2 - T z)t? . (16)
k=1 2=1 Lk R — —F—

The covariance between the errors in the estimate of F at two different

survey points is

Ao T T
cov(AFl, 0F,) = 2) CpZy = z, C

1 &R EZy a7

P
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The standard error in SC is calculated using Equations (8) and (17) =
2 1/2
38 T H
c © [(W z Ep&] 18

where gp is the pressure measurement variance -~ covariance matrix.

GC1 is evalpatedzbz calculating the horizontal gradients of the para-
P _T<K
meters PS'I‘SKs and 25 _s: . This can be accomplished by expanding the

s
parameters ir a regression polynomial and then taking ti:e derivative of

the expansion

n-V=n-v@E2 =4 vz (19

The errors inn ° VF can be related to the errors in the measured values

of F

A(n + VF) = n - V(aF)

e wb] - [a- wige ]
S| A(n + VF)| = [ (@ + v2)'C (a + V2) (20)

The covariance between the gradient errors at two different survey points

is

cov [A(Bi . vlFl)’ A(_g2 . VZFZ)] = (Ql . Vl)(p_.2 . Vz)cov(AFl, AF2)

- @y + T2 Celny ¢ 7Z)). (21)

The wnit vectors, gradients and position coordinates are evaluated at

sur+:y points 1 and 2 as indicated by the subscripts.

oy o € Ea oI o R 2 L, T A R R L I S R e R
N N ., \ . o lce g e b P
4 i . hwater e Pees

It is not difficult to show that the magnitude of the error in the
se~ond term comprising GC1 (see Equation (4)) is less than 20 percent of ?
the error in the first term at 10° elevation. The second term error ’

- decreases to less than 0.5 percent of the first term error at zenith,

J

»
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If we neglect this small contribution from the second term comprising GCl,

the residual refraction error can be approximated as

.. 95C C .
AR = oP AP + sin E tan E A [E- V(PsTsKs)] ' (22)

The covariance between the refrac+t:i m errors to two different sur-

vey points on the earth’ s surface is given by

9SC 3sC

cov(ARl, ARZ) =3P 3P cov(APl, APZ)
1 2
aSC C
P_ sin E, tan E °°"{AP1’ Al Vz(PsTsKs)zl}
1 2 2
aSC C
T %, Sin E. tan E Cov'{APZ’ AlBi vl(PsTsKs)ll}
2 1 1
C2 P
. X . v
+ sin E, tan El sin E2 tan Ez COV{A[P—I vl(Psls 9)1]’ A[EZ 'Z(PsTsKs)Z]}
4

(23)

The pressure covariance can be calculated from Equation (17) and the gradient
covariance can be calculated from Equation (21). The covariance between the
pressure and gradient errors is calculated by first rewriting the covariance

function

cov{APl, Aa, VZ(PSTSKS)z]} = (n, * Y))cov[aP), AP T K),}.  (24)

A(PSTSKS)2 is a function of both pressure and temperature errors

3K
S
A(PSTSKS)2 = (TSKS + PSTS BPZ 2AP2 +

BKS
PSKS + PsTs ST; 2AT

(25)

2 *

The variation of Ks with respect to pressure 1s small and can be neglected.

Since AP1 and AT2 are uncorrelated, the covariance is given by

g

T

R >
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cov{APl, AMan, - vchsrsxs)zl} = (0, * Vy)covlaP;, (T K),0P,]

T
Substituting Equations (17), (z1), and (26) into (23) gives

35C 35C T
2) 3 3P, z,8.%,

cov(AR,, AR

35C C(TsKs)Z ZTC ( . V.Z2.)
9P sin E, tan E, ~1-p Iy * Yo%y

asc  C(TgKS)g T

9, sin E, tan E, 2,C, (@, - V12y)

+

2
C T
sin El tan E1 sin E2 tan E2 (El vlgl) EPTK(EZ VZZZ) @n

-+

where

1 ,.-1

c = &xfz”
g, =&

P 2

-1 -1

Cprr = (xF 322 n7t.

—PTK
All the parameters for the covariance function are completely specified
in the Appendix. To illustrate the basic properties of the covariance
function, Equation (27) is evaluated in the following section for the

special case of a dense weather station network surrounding the survey

points.
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IV. PROPERTIES OF THE RANGE ERROR COVARIANCE FUNCTION

The basic properties of the range residual covariance function can
be illustrated by considering the special case of a dense network of
weather stations uniformly distributed within a circle of radius R (see
Figure 6). We will assume that the measurement precision is the same for
all the weather stations. In this case the variance - covariance matrix

for the regression coefficients is given by

Iplea™mtad . (28)

= (x% 5
"(KE F

QF F
For simplicity the regression coordinates will be expressed in polar
coordinates (rather than geocentric coordinates) with the origin located

at the center of the weather station network (Figure 6).

X, =1

»
[]

p cos o
X, = p sin a

2
X, =p cos a sin a

x. = p2 sin® a ©9)

is the radial distance from the center of the circle and a is the azi-

©

muth which is measured clockwise from the north-south line.

The zlement in the ith row jth column of the 5?5 matrix is
)
; (30)
k=1 xklxkj

h ; , h
whetre X is the if regression coordinate evaluatecd at the k™" weather

station. The summation in (30) can be approximated as an integral 1if

the number of weather stations is large and if the stations are uniformly

-
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distributed throughout the circle. Under these conditions, the §?§ and

Cp matrices for a quadratic regression fit become

N a—

1 0 0 0 R%/4 R2/4
0 R2/4 3 0 0 0
2
fx «n 0 0 R"/4 0 0 0 (31)
0 0 0 R%/24 0 0
R%/4 0 0 0 R8s RY/24
| R%/4 0 0 o &2 r%s_|
B 2 2
4 0 0 0  -6/R -6/R
) 0 4/8% 0 0 0 0
o 2
Cp 0 0 4/R 0 0 0 (32)
0 0 0 24/R% 0 0
-6/R 0 0 0 18/R% 6/R
-6/R% 0 0 0 6/R*  18/R%_

The range residﬁal covariance function can now be calculated by sub-
stituting the covariance matrix given by (32) into Equation (27).

From Equation (27) we see that the variance of the range error AR is
a function of the pressure error variance, the PSTSKs gradient error
variance and covaria. ce between the pressure and gradient errors. The
relative magnitudes of these three factors will depend on the location of
the survey points and the number and locations of the weather stations
used to obtain the regression fit. The standard deviations of these
three factors werecalculated for the dense weather station network iilus-
trated in Figure 6. The results are plotted in Figures 7 and 8, versus »
the distance of the survey point from the center of the circle. A linear

regression fit was used to calculate tlhe curves plotted in Figure 7 and a
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Figure 7. Normalized standard de '-tioa of the measurement error

1/2, gradient error [(n VZ)TQF(H . Vg)]l/z and co-

T
[z'cpz]
variance between the measurement and gradient errors

[Z?QF(E . Vg)]l/z. The normalization factors are oF//;

oF/mR2 and OF//;i respectively. The data were calculated
for the case where a linear regression polynomial was used

to interpolate the measurements.
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Figure 8.

Normalized standard deviation of the measurement error

1/2

[ETCFQ] , gradient error [(n * Y&)TQF(E_- Vg)]llz and co-

variance between the measurement and gradient errors

[Z?SF(B . Vg)ll/z. The normalization factors are cF/;,

UF/n‘nR2 and GF//;ﬁ respectively. The data were calculated
for the case where a quadratic regression polynomial was

used to interpolate the measurcments.
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quadratic regression fit was used to calculate the curves plotted in
Figure 8. The gradient error is constant for the linear fit because the
gradient is independent of position. 1In all other cases the error in-
creases, particularly for p larger than R. This behavior is typical of
regression polynomials. The weather stations are all located within the
circle (p < R) and in this region the error is relatively small. Outside
the circle where there are no weather stations, the error increases sub-
stantially. In general, the higher the order of the regression polynomial,
the more rapidly the error increases outside the region covered by the
veather station network.

For a quadratic regression fit the variance of AR is calculated by

substituting (32) into (27) and letting z z

1 2
2

o
var (AR) = 0.222 "p Q- 2o+ 2.94)

sin2 E 2

3 02

L3:50x10° S, e 32

p
sin2 E tan E nR 2

|

+ 953

2 2
Ay « 108 On + 0.210 - )
4 —1:32 ¥ 10 T P (1 -3 + 9p2) (33)

ry
sin” E tan2 E nR2

where 5 = p/R. The variance is given in units of cm2 when R 1s in meters,
O is in °K and op is in mb. The standard deviation of AR is plotted
versus p in Figure 9 for the case where Op = 1.0 mb and OT = 1.5° K.

These are probably worst case estimates for the measurement errors. As
expected, the residual refraction error is small whenever ¢ < R and in-

creases significantly whenever the observation point moves outside the

region covered by the weather station network.
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Standa.d deviation of the residual refraction error. The
curves are normalized with respect to 1//n where n is the
number of weather stations. The results were calculated for
op = 1.0 mb and op = 1.5° K and correspond to the case where

the surface meteorological is interpolated using a quadratic

regression polyaomial.
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There are situations where AR is determined primarily by either the

pressure error or the temperature error. For example, at the high eleva-
tion angles and when R is large, only the first term in Equation (33) is
significant so that AR is primarily a function of the pressure error.
The conditions under which either pressure or temperature errors are
dominant are illustrated in Figure 10. The curves define the points
where the pressure and temperature errors contribute equally to the AR
variance. In the region above the curves, the pressure errors dominate
and below the curves the temperature errors dominate. The data plotted
in Figure 10 were calculated for the case where the survey point is
located at the center of the weather station network and a quadratic
regression polynomial is used to interpolate the surface data. The corre-
sponding curves for a linear regression polynomial are similar. R will
probably be on the order of a few hundred kilometers for a practical weather
station netwerk. In this case, the results in Figure 10 indicate that
pressure errors will be the most important factor determining the magni-
tude of the residual refraction errors.

The range residual correlation function is plotted in Figures 11 and
12 for the case where a linear regression polynomial is used to inter-
polate the surface data. The corresponding cturves for a quadratic
regression polynomial are plotted in Figures 13 and 1l4. 1In all cases, the
azimuth and elevation angles of the laser beam trajectory are assumed to
be the same at both survey points (p1 and p2). In Figures 11 and 13 oneo
survey point is located at the center of the weather station network and
the other survey point is located at a distance p from the center. 1In
Figures 12 and 14 the survey points are symmetrically located on opposite

sides of the line intersecting the center of the network. Whenever the
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PRESSURE ERRORS
TEMPERATURE ERRORS

% /%4

iI00 - 200 300 400
R (km)

Refraction error regions. The curves define the points
where the pressure and temperature errors contribute
equally to the residual refraction errors. In the region
above the curves the pressure errors dominate and below

the curves the temperature errors dominate.
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regression polynomial is used to interpolate the surface data.
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Figure 13. Range ervor correlation function for the case where a quadratic

regression polynomial is used to interpolate the surface data.

ST, R T ey, T8

A A P ity o e s

A

PR

B g e e RN
¢



L .

32

1.0

0.5

CORRELATION
o
o

-0.5

-'.oLllllJllllllllLllll

00 1.0 20 3.0 4.0

Figure 14. Range error correlation function for .he case where a quadratic
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distance separating the two survey points is small compared to R, the

correlation is close to one. The residual refraction errors become un-

correlated when the separation distance is on the order of R.
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V. CONCLUSIONS

Ray trace comparisons using the Haven Hop radiosonde data indicate
that the spherical correction (SC) and gradient correction (GCl) for-
mulas are nearly unbiased estimators of the rarge error due to atmo-
spheric refraction. The uncorrected residual error is approximately 5 mm
at 20° elevation and decreases to approximately 1 mm at zenith. At this
level the residual refraction error appears to be caused almost entirely
by errors in the meteorological data which are used to calculate SC and
GCl' Other error sources apparently contribute much less than 5 mm at
20° elevation and much less than 1 mm at zenith. A theoretical model for
the range residual covariance function was derived under this assumption.
Since the surface meteorological data are interpolated from weather
station measurements, the residual error and error covariance are a
function of the number and location of the stations.

To illustrate its properties, the covariance function was evaluated
for the special case of a dense network of weather stations uniformly
distributed within a circle of radius R. The standard deviation of the
residual refraction error is inversely proportional to the square root
of thez number f weather stations. It is relatively small provided the
sur ay point is located within the circle covered by the network. Out-
;ide the network the standard deviation increases substantially partic-
ularly when high order regression polynomials are used to interpolate the
weather data. At low elevation angles (< 20°) and when the network
extends over a small region (R - 100 km), the range crror is primarily
a function of the temperature crror. At the higher eolevation angles

(> 20°) and when the weather station network extends over a large region
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(R > 100 km),range error is primarily a function of the pressure error.
The refraction errors inherent in the range measurements to two different
survey points will be highly correlated if the distance between the points
is small compared to R. The errors are uncorrelated when the separation
distance is on the order of R.

In genzral, the residual refraction error decreases as the size of
the network and number of weather stations increase. If the weather
station network is large enough, the effects of pressure and temperature
errors may be reduced to the point where other error sources dominate.
The covariance model derived in this report includes only the effects of
pressure and temperature errors. These other error sources arise from
the departure of the atmosphere from hydrostatic equilibrium, from the

neglect of quadratic and higher order terms in the horizontal variation

R e A LR L i e DL
PRI T NCTIRCT s S

of refractivity, and from inadequate regression models for surface pressure

“

and temperature. Based upon our analysis of the Haven Hop ray tracing data,
we believe the effects contribute less than a few millimeters error above 20°

elevation. If the surface temperature and pressure do not vary signifi-
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RPN

cantly among the survey points, the atmospheric refractivity will be

“ine B

f{airly homogeneous. Under these conditions we expect the errors caused

.

by these other sources to be highly correlated between each pair of survey
points. The validity of the theoretical model is now being investigated
by ray tracing using the Haven Hop radiosonde data.

The analysis in this report did not consider the problem of extra-
polating weather measurements to different altitudes. This could
potentially be a major error source, particularly in mountainouvs regions
such as California where weather stations may be located at widely dif-

ferent altitudes. This problem is also being investigated.
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APPENDIX

RANGE RESIDUAL COVARIANCE FUNCTION

ARl = range error at cube cormer 1

“
£

AR2 = range error at cube corner 2

i —_— A2°p2 T To-1
: R s, sl g, 4@ 0 5
i AB T K 02
= S's 'p T, Toy~1
+ sin E, «s'n E, tan E Zl(z-ﬁ) n2 VZZ2
1 2 2
2
A3 TAKS Ep T, T, -1
* nE sin E. tan E. L& X "y - V8

2 1 1

212,22 2.2 2]
+ B [TSKSop + (K - TTg) Fyoy

T, Ty =1
sin E. tan El sin E2 tan E (El Vlgl) (X'X) 22 VZZQ

1 2
f())

A = m 0.002357

B = £()) 6.915 x 102

r =1.04 x 1072

£(0) = C.9650 + 0.0164 + 0.000228
A2 A6

A = laser wavelength (um)

F(6,H) = 1 + 0.0026 cos (26) - 0.00031 H

0 = colatitude of cube corner = 99° - latitude

H = sltitude of cube corner (km)

KS = 1,163 + 0.009A8 cos (20) - 0.00104 TS + 0.06001435 PQ

TS = gurface temperature (°K)

PS = surface pressures (mh)
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oP = rms pressure error
OT = rms temperature error
- B . ;
1 ] 1 1
6 ;
1 %, f
: i
¢l sin 61 ¢2 sin 62 :
: 3
; Zl = 61¢1 sin 91 ZQ = 62¢2 sin 62 t
2 2 !
°1 %
¢ 2 .2 2 .2 ‘
: ¢l S1ln 61 ¢2 sin 62
: | ] — -
:
- , _ _
: 0 0
0 1
’ ) n, * V.2, = 1 sin @ ¢l cos el cos o ’
: -1 1-1 — 1 1
) 91 r, ¢1 sin 61 + 81¢1 cos 6, r,
% 0 261
2
2¢1 sin 81 ¢1 sin 28l
0 0
0 1
1 sin C!2 ¢2 cos k)2 cos a,
LR L T B . T in 8 a 6, .
5 re ¢2 sin 2 + ,2¢2 cos 2 r“
0 26,
2@2 sin 62 _J @2 sin ZHZ

feo)
1]

1 colatitude of cube corner 1 = 90° - laritude

<0
[}

2 colatitude of cube corner 2 90° - latitude
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9 = longitude of cube corner 1
¢, = lorgitude of cube corner 2
El = ratellite elevation angle as seen from cube corner 1
A
EZ = satellite elevation angle as seen from cube corner 2
al = sztellite azimuth angle as seen from cube corner 1
a, = satellite azimuth angle as seen from cube corner 2 i
r, = earth radius (m) 3
i
T - > 2 s2 2
$. sin 6. 8 ¢ J
1 01 ¢1 sin 1 61¢l sin 61 61 ¢l sin 61 ;
1 5 & sin 5 5 sin ; 52 5 sin2 ) ;
2 2 2 272 2 2 2 2 §
_X_=o . 3
1 é @ sin é 8 @ sin 5 62 &2 sin2 ) ) .
L_ n n n nn n n n n
éi = colatitude of the ith weather station
51 = longitude of the ith weather station

Note: This dorivation assumes that all weather stations and both cube

corners are located at the same altitude. The measuremen*t errors a2t the
w.dather stations are assumed to be statistically independent and identi-
cally distributed random variables. Although the X and Z matrices are given
for the case where the surface pressure and temperature are expanded in
quadratic regression polynomials the results can easily be extended for

higher or lower expansions.
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